Neonatal NMDA receptor blockade disturbs neuronal migration in rat somatosensory cortex in vivo.
نویسندگان
چکیده
Glutamate plays an important role in the control of neuronal migration in the developing cerebral cortex. The present study describes changes in the structure and function of the cerebral cortex after transient blockade of N-methyl-D-aspartate (NMDA) receptors during the late period of neuronal migration. Elvax slices containing the NMDA antagonist MK801 were placed over the somatosensory cortex of newborn rats and the drug was released over a period of 2-3 days. After survival times of 1 or 2 weeks, neuroanatomical and in vitro electrophysiological analyses revealed prominent structural and functional alterations in the cortical region underlying the implant. Cortical lamination was disturbed and heterotopic cell clusters were found in layer I of MK801-treated animals. Morphologically identified pyramidal neurons recorded in MK801-treated cortex revealed late NMDA receptor-mediated synaptic inputs and fragile monosynaptic responses at stimulation frequencies >0.2 Hz. Our data indicate that impairment of NMDA receptors during early corticogenesis induces neuronal migration disorders and delays the functional maturation of the developing cortical network.
منابع مشابه
Modulatory Effects of Memantine on Neuronal Response Properties in Rat Barrel Cortex
Introduction: Memantine as N-Methyl-D-aspartic acid (NMDA) receptor antagonist is used in some neurological disorders. It has been reported that memantine has modulatory effects on the somatosensory information processing in healthy subjects. This study investigated the effect of memantine on electrophysiological properties of barrel cortex neurons in male rats. Methods: Single unit recording ...
متن کاملExcitatory GABA action is essential for morphological maturation of cortical neurons in vivo.
GABA exerts excitatory actions on embryonic and neonatal cortical neurons, but the in vivo function of this GABA excitation is essentially unknown. Using in utero electroporation, we eliminated the excitatory action of GABA in a subpopulation of rat ventricular progenitors and cortical neurons derived from these progenitors by premature expression of the Cl- transporter KCC2, as confirmed by th...
متن کاملNeuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats
Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...
متن کاملDifferential Effects of the Lateral Hypothalamus Lesion as an Origin of Orexin and Blockade of Orexin-1 Receptor in the Orbitoftontal Cortex and Anterior Cingulate Cortex on Their Neuronal Activity
Several studies revealed that orexins may take part in the regulation of the different forms of affective and cognitive processes during wakefulness. The orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC) as an important part of the prefrontal cortex (PFC) have a crucial role in cognitive processes such as reward and decision-making and has a high density of orexin receptor type 1 (...
متن کاملMorphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex
Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 15 3 شماره
صفحات -
تاریخ انتشار 2005